Department of Frontier Sciences for Advanced Enviroment,
Graduate School of Environmental Studies, Tohoku University Mechanics and Design of Composite Materials (Narita Lab.) 東北大学 大学院環境科学研究科 先端環境創成学専攻 複合材料設計学分野 成田研究室

東北大学

Results

Press Release

  • February 16, 2018(Wed)Nikkan Kogyo Newspaper "Tohoku University and Tohoku Steel Co. Ltd have successfully developed the Clad Steel Plate possessing vibration power generation property, 25 times upon piezoelectric elements"
  • December 7, 2016 (Wed)Nikkan Kogyo Newspaper "Development of composite that retains energy harvesting and sensing functions"
  • November 30, 2016(Wed)Nikkei Sangyo Newspaper "New material for vibration energy harvesting to be used as an energy source for IoT sensors"
  • November 28, 2016(Mon)Nikkei Newspaper "Securing energy sources made efficient for wearable devices"

Patents

  • WO 2018/230154 Fumio Narita et al.
  • PCT/JP2021/25058 Zhenjin Wang, Kohei Maruyama and Fumio Narita

Selected Papers

  • S. Egawa, H. Kurita, T. Kanno and F. Narita, Effect of Silk Fibroin Concentration on the Properties of Polyethylene Glycol Dimethacrylates for Digital Light Processing Printing, Advanced Engineering Materials, in press.
  • K. Takaishi, Y. Kubota, H. Kurita, Z. Wang and F. Narita, Fabrication and Characterization of Mullite Ceramic Fiber/Thermoplastic Polymer Piezoelectric Composites, Journal of the American Ceramic Society, in press.
  • Z. Yang, Z. Wang, K. Nakajima, D. Neyama and F. Narita, Structural Design and Performance Evaluation of FeCo/Epoxy Magnetostrictive Composites, Composites Science and Technology, in press.
  • H. Kurita, C. Bernard, A. Lavrovsky and F. Narita, Tensile Properties of Mechanically-Defibrated Cellulose Nanofiber-Reinforced Polylactic Acid Matrix Composites Fabricated by Fused Deposition Modeling, Transactions of Nanjing University of Aeronautics and Astronautics, 38 (2021) 68-74.
    https://doi.org/10.1016/j.sna.2021.112742
  • Y. Wang, Y. Shi and F. Narita, Design and Finite Element Simulation of Metal-Core Piezoelectric Fiber/Epoxy Matrix Composites for Virus Detection, Sensors and Actuators: A. Physical, in press.
    https://doi.org/10.1016/j.sna.2021.112742
  • C. Wu, S. Egawa, T. Kanno, H. Kurita, Z. Wang, E. Iida and F. Narita, Nanocellulose Reinforced Silkworm Silk Fibers for Application to Biodegradable Polymers, Materials & Design 202 (2021) 109537.
    https://www.sciencedirect.com/science/article/pii/S0264127521000903
  • H. Kurita, R. Ishigami, C. Wu and F. Narita, Mechanical Properties of Mechanically-Defibrated Cellulose Nanofiber Reinforced Epoxy Resin Matrix Composites, Journal of Composite Materials 55 (2021) 455-464.
    https://journals.sagepub.com/doi/full/10.1177/0021998320967430
  • F. Narita, Z. Wang, H. Kurita, Z. Li, Y. Shi, Y. Jia and C. Soutis, A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of Covid-19 and Other Viruses, Advanced Materials 33 (2021) 2005448.
    https://onlinelibrary.wiley.com/doi/10.1002/adma.202005448
  • Y. Wang, T. Yanaseko, H. Kurita, H. Sato, H. Asanuma and F. Narita, Electromechanical Response and Residual Thermal Stress of Metal-Core Piezoelectric Fiber /Al Matrix Composites, Sensors 20 (2020) 5799.
    https://www.mdpi.com/1424-8220/20/20/5799
  • Z. Wang, H. Kurita, H. Nagaoka and F. Narita, Potassium Sodium Niobate Lead-Free Piezoelectric Nanocomposite Generators Based on Carbon-Fiber-Reinforced Polymer Electrodes for Energy-Harvesting Structures, Composites Science and Technology, 199 (2020) 108331.
    https://www.sciencedirect.com/science/article/pii/S0266353820312665
  • Z. Yang, Z. Wang, M. Seino, D. Kumaoka, G. Murasawa and F. Narita, Twisting and Reverse Magnetic Field Effects on Energy Conversion of Magnetostrictive Wire Metal Matrix Composites, Physica Status Solidi, Rapid Research Letters 2020, 2000281.
    https://onlinelibrary.wiley.com/doi/full/10.1002/pssr.202000281
  • F. Narita, Y. Wang, H. Kurita and M. Suzuki, Multi-Scale Analysis and Testing of Tensile Behavior in Polymers with Randomly Oriented and Agglomerated Cellulose Nanofibers, Nanomaterials 10 (2020) 700.
    https://www.mdpi.com/2079-4991/10/4/700
  • Z. Wang, K. Mori, K. Nakajima and F. Narita, Fabrication, Modeling and Characterization of Magnetostrictive Short Fiber Composites, Materials 13 (2020) 1494.
    https://www.mdpi.com/1996-1944/13/7/1494
  • Y. Xie, H. Kurita, R. Ishigami and F. Narita, Assessing the Flexural Properties of Epoxy Composites with Extremely Low Addition of Cellulose Nanofiber Content, Applied Sciences 10 (2020) 1159.
    https://www.mdpi.com/2076-3417/10/3/1159
  • Z. Wang and F. Narita, Fabrication of Potassium Sodium Niobate Nano-Particle/Polymer Composites with Piezoelectric Stability and Their Application to Unsteady Wind Energy Harvesters, Journal of Applied Physics, 126 (2019) 224501.
    https://aip.scitation.org/doi/full/10.1063/1.5127937
  • K. Katabira, H. Kurita, Y. Yoshida and F. Narita, Fabrication and Characterization of Carbon Fiber Reinforced Plastics Containing Magnetostrictive Fe-Co Fibers with Damage Self-Detection Capability, Sensors, 19 (2019) 4984.
    https://www.mdpi.com/1424-8220/19/22/4984
  • H.Kurita, S. Suzuki, S. Kikuchi, N. Yodoshi, S. Gourdet and F. Narita, Strengthening Mechanism of Titanium Boride Whisker-Reinforced Ti-6Al-4V Alloy Matrix Composites with the TiB Orientation Perpendicular to the Loading Direction,Materials, 12 (2019) 2401.
    https://www.mdpi.com/1996-1944/12/15/2401
  • H. Kurita, K. Katabira, Y. Yoshida and F. Narita, Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes, Materials, 12 (2019), 2055.
    https://res.mdpi.com/materials/materials-12-02055/article_deploy/materials-12-02055.pdf?filename=&attachment=1
  • Z. Yang, K. Nakajima, L. Jiang, H. Kurita, G. Murasawa and F. Narita, Design, Fabrication and Evaluation of Metal-Matrix Lightweight Magnetostrictive Fiber Composites, Materials and Design, 175 (2019) 107803.
    https://www.sciencedirect.com/science/article/pii/S0264127519302400
  • Z. Wang and F. Narita, Corona Poling Conditions for Barium Titanate/Epoxy Composites and their Unsteady Wind Energy Harvesting Potential, Advanced Engineering Materials, 21 (2019) 1900169.
    https://doi.org/10.1002/adem.201900169
  • Z. Yang, H. Kurita, R. Onodera, T. Tayama, D. Chiba and F. Narita, Evaluation of Vibration Energy Harvesting Using a Magnetostrictive Iron-Cobalt/Nickel-Clad Plate, Smart Materials and Structures, 28 (2019) 034001.
    https://iopscience.iop.org/article/10.1088/1361-665X/aaf9f2
  • M. Peron, K. Katabira, L. M. Viespoli, F. Narita, F. Berto, Mixed Mode Fracture Behavior of Notched Giant Magnetostrictive: Mechanical Characterization and Comparison among Failure Criteria, Theoretical and Applied Fracture Mechanics, 99 (2019) 194-204.
    https://www.sciencedirect.com/science/article/pii/S0167844218304968
  • F. Narita, H. Nagaoka and Z. Wang, Fabrication and Impact Output Voltage Characteristics of Carbon Fiber Reinforced Polymer Composites with Lead-Free Piezoelectric Nano-Particles, Materials Letters, 236 (2019) 487-490.
    https://doi.org/10.1016/j.matlet.2018.10.174
  • F. Narita and M. Fox, A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications (Invited Review), Advanced Engineering Materials, 20 (2018) 1700743.
    https://doi.org/10.1002/adem.201700743
  • K. Katabira, Y. Yoshida, A. Masuda, A. Watanabe and F. Narita, Fabrication of Fe-Co Magnetostrictive Fiber Reinforced Plastic Composites and Their Sensor Performance Evaluation, Materials, 11 (2018) 406.
    http://www.mdpi.com/1996-1944/11/3/406
  • Z. Yang, K. Nakajima, R. Onodera, T. Tayama, D. Chiba and F. Narita, Magnetostrictive Clad Steel Plates for High-Performance Vibration Energy Harvesting, Applied Physics Letters, 112 (2018) 073902.
    https://aip.scitation.org/doi/full/10.1063/1.5016197
  • F. Narita, M. Fox, K. Mori, H. Takeuchi, T. Kobayashi and K. Omote, Potential of Energy Harvesting in Barium Titanate Based Laminates from Room Temperature to Cryogenic/High Temperatures: Measurements and Linking Phase Field and Finite Element Simulations, Smart Materials and Structures, 26 (2017) 115027.
    http://iopscience.iop.org/article/10.1088/1361-665X/aa91a5/meta
  • T. Takeda and F. Narita, Fracture Behavior and Crack Sensing Capability of Bonded Carbon Fiber Composite Joints with Carbon Nanotube-based Polymer Adhesive Layer under Mode I Loading, Composites Science and Technology, 146 (2017) 26-33.
    http://www.sciencedirect.com/science/article/pii/S0266353817308709
  • F. Narita, T. Kobayashi and Y. Shindo, Evaluation of Dielectric and Piezoelectric Behavior of Unpoled and Poled Barium Titanate Polycrystals with Oxygen Vacancies using Phase Field Method, International Journal of Smart and Nano Materials, 7 (2016) 265-275.
    http://www.tandfonline.com/doi/full/10.1080/19475411.2017.1278834