東北大学 大学院環境科学研究科 先端環境創成学専攻 複合材料設計学分野 成田研究室 Mechanics and Design of Composite Materials (Narita Lab.) Department of Frontier Sciences for Advanced Enviroment, Graduate School of Environmental Studies, Tohoku University

東北大学

研究実績

報道

  • 2023年6月15日 (木)日本経済新聞 『東北大、炭素繊維強化プラスチック(CFRP)の曲げ振動発電・蓄電でセンサ情報のワイヤレス送信を実現』
  • 2023年1月17日 (火)日刊工業 『新磁歪クラッド材開発 ウイルスなど捉える』
  • 2022年12月27日 (火)産経東北版 『微小荷重センシングシステムを開発-曲げ振動を利用して風邪コロナウイルスの検知に成功-』
  • 2022年12月21日 (水)河北新報 『電源自給型センサー開発 振動利用し発電、情報送信』
  • 2022年3月2日 (水)日刊工業 『振動が農業を変える? 磁歪材で害虫密度半減』
  • 2021年2月17日 (水)日経産業 『蚕の餌にCNF、糸の強度2倍 生分解性プラの用途拡大へ』
  • 2020年12月7日 (月)日経産業 『コロナ社会の安心提供 電源不要のウイルスセンサ―』
  • 2020年12月5日 (土)河北新報 『害虫揺らして防除 通電で微細振動 新素材活用』
  • 2020年11月24日 (火)日経産業 『振動で発電、電力10倍の材料』
  • 2020年11月19日 (木)日刊工業 『衝撃発電高効率に 軽金属複合材料を開発』
  • 2020年11月18日 (水)鉄鋼新聞 『衝撃で発電する複合材開発 磁歪ワイヤとアルミ合金で』
  • 2020年11月10日 (水)山形新聞 『振動発電の新材料開発』
  • 2020年4月6日 (水)日刊自動車 『“材料界の逸材”植物由来のCNF 金属との複合化で飛躍的に用途拡大』
  • 2018年2月16日 (水)日刊工業 『振動発電、圧電素子25倍のクラッド鋼板、東北大と東北特殊鋼が開発 』
  • 2016年12月7日 (水)日刊工業 『発電・センサー機能保持 コンポジット開発』
  • 2016年11月30日(水)日経産業 『振動発電に新素材 IoTセンサー電源に』
  • 2016年11月28日(月)日経新聞 『ウエラブル機器 電源の確保 効率化』

特許

  • 特許第7289482号 呉宸、栗田大樹、王真金、成田史生『ナノセルロースを含む複合糸の製造方法、ナノセルロースを含む複合糸および蚕用の餌』
  • 特許第6991685号 『振動発電装置』
  • 特許第6884299号 成田史生他 『複合強化型の磁歪複合材料及びその製造方法』
  • 特許第6653834号 成田史生他 『エネルギー変換部材、振動発電装置、力センサー装置およびアクチュエータ』
  • 特開2019-047576号 成田史生他 『発電装置、施設の環境情報センシングシステムおよび人/動物センシングシステム』
  • 国際公開WO 2018/230154 成田史生他『エネルギー変換部材、振動発電装置、力センサー装置およびアクチュエータ』
  • PCT国際出願 PCT/JP2022/41211
  • PCT国際出願 PCT/JP2022/26157
  • PCT国際出願 PCT/JP2022/11109
  • PCT国際出願 PCT/JP2022/9875
  • PCT国際出願 PCT/JP2022/8636
  • PCT国際出願 PCT/JP2021/25058 王真金、丸山衡平、成田史生
  • 特願2022-0144 栗田大樹、成田史生、余瑶楠他
  • 特願2022-106999 王真金、丸山衡平、成田史生
  • 特願2022-44485 栗田大樹他
  • 特願2021-067990 栗田大樹、成田史生、中島賢也他
  • 特願2021-041320号 成田史生他
  • 特願2021-031516号
  • 特願2020-146660号
  • 特願2020-071912号 王真金、成田史生
  • 特願2019-194897号
  • 特願2019-132272号 栗田大樹、成田史生
  • 特願2019-116217号

主要論文

  • Y. Yu, C. Luo, T. Suto, Y. Uetsuji, F. Narita, Fabrication, Evaluation, and Multiscale Simulation of Piezoelectric Composites Reinforced Using Unidirectional Carbon Fibers for Flexible Motion Sensors, Small. (2023).
    https://doi.org/10.1002/smll.202307689
  • Y. Yu, Y. Kubota, H. Kurita, F. Narita, Piezoelectric Glass-Fiber-Reinforced Polymer Sensor for Structural Health Monitoring and Stiffness Sensing, Adv Eng Mater. (2023).
    https://doi.org/10.1002/adem.202300638
  • Y. Yu, C. Luo, H. Chiba, Y. Shi, F. Narita, Energy harvesting and wireless communication by carbon fiber-reinforced polymer-enhanced piezoelectric nanocomposites, Nano Energy. 113 (2023).
    https://doi.org/10.1016/j.nanoen.2023.108588
  • Y. Yu, Y. Shi, H. Kurita, Y. Jia, Z. Wang, F. Narita, Carbon Fiber-Reinforced Piezoelectric Nanocomposites: Design, Fabrication and Evaluation for Damage Detection and Energy Harvesting, Compos Part A Appl Sci Manuf. 172 (2023).
    https://doi.org/10.1016/j.compositesa.2023.107587
  • Y. Wang, Y. Yu, X. Wei, F. Narita, Self-Powered Wearable Piezoelectric Monitoring of Human Motion and Physiological Signals for the Postpandemic Era: A Review, Adv Mater Technol. (2022).
    https://doi.org/10.1002/admt.202200318
  • Y. Yu, F. Narita, Evaluation of electromechanical properties and conversion efficiency of piezoelectric nanocomposites with carbon-fiber-reinforced polymer electrodes for stress sensing and energy harvesting, Polymers (Basel). 13 (2021).
    https://doi.org/10.3390/polym13183184
  • H. Kurita, M. Suganuma, Y. Wang and F. Narita, k-Means Clustering for Prediction of Tensile Properties in Carbon Fiber-Reinforced Polymer Composites, Advanced Engineering Materials, in press.
  • Y. Wang, C. Soutis, D. Ando, Y. Sutou and F. Narita, Application of Deep Neural Network Learning in Composites Design, European Journal of Materials 2 (2022) 118-171.
    https://doi.org/10.1016/j.sna.2021.112742
  • K. Maruyama, Y. Kawakami, K. Mori, H. Kurita, Y. Shi, Y. Jia and F. Narita, Electromechanical Characterization and Kinetic Energy Harvesting of Piezoelectric Nanocomposites Reinforced with Glass Fibers, Composites Science and Technology 223 (2022) 109408.
    https://doi.org/10.1016/j.sna.2021.112742
  • H. Kurita, P. Lohmuller, P. Laheurte, K. Nakajima and F. Narita, Additive manufacturing and energy-harvesting performance of honeycomb-structured magnetostrictive Fe52–Co48 alloys, Additive Manufacturing, 54 (2022) 102741.
    https://doi.org/10.1016/j.sna.2021.112742
  • H. Kurita, T. Keino, T. Senzaki and F. Narita, Direct and Inverse Magnetostrictive Properties of Fe–Co–V Alloy Particle-Dispersed Polyurethane Matrix Soft Composite Sheets, Sensors & Actuators: A. Physical, 337 (2022) 113427.
    https://doi.org/10.1016/j.sna.2021.112742
  • Z. Wang, K. Maruyama and F. Narita, A Novel Manufacturing Method and Structural Design of Functionally Graded Piezoelectric Composites for Energy-Harvesting, Materials & Design, 214 (2022) 110371.
    https://doi.org/10.1016/j.sna.2021.112742
  • S. Egawa, H. Kurita, T. Kanno and F. Narita, Effect of Silk Fibroin Concentration on the Properties of Polyethylene Glycol Dimethacrylates for Digital Light Processing Printing, Advanced Engineering Materials, 23 (2021) 2100487.
    https://doi.org/10.1016/j.sna.2021.112742
  • K. Takaishi, Y. Kubota, H. Kurita, Z. Wang and F. Narita, Fabrication and Characterization of Mullite Ceramic Fiber/Thermoplastic Polymer Piezoelectric Composites, Journal of the American Ceramic Society, 105 (2022), 308-316.
    https://doi.org/10.1016/j.sna.2021.112742
  • Z. Yang, Z. Wang, K. Nakajima, D. Neyama and F. Narita, Structural Design and Performance Evaluation of FeCo/Epoxy Magnetostrictive Composites, Composites Science and Technology, 210 (2021) 108840.
    https://doi.org/10.1016/j.sna.2021.112742
  • H. Kurita, C. Bernard, A. Lavrovsky and F. Narita, Tensile Properties of Mechanically-Defibrated Cellulose Nanofiber-Reinforced Polylactic Acid Matrix Composites Fabricated by Fused Deposition Modeling, Transactions of Nanjing University of Aeronautics and Astronautics, 38 (2021) 68-74.
    https://doi.org/10.1016/j.sna.2021.112742
  • Y. Wang, Y. Shi and F. Narita, Design and Finite Element Simulation of Metal-Core Piezoelectric Fiber/Epoxy Matrix Composites for Virus Detection, Sensors and Actuators: A. Physical 327 (2021) 112742.
    https://doi.org/10.1016/j.sna.2021.112742
  • C. Wu, S. Egawa, T. Kanno, H. Kurita, Z. Wang, E. Iida and F. Narita, Nanocellulose Reinforced Silkworm Silk Fibers for Application to Biodegradable Polymers, Materials & Design 202 (2021) 109537.
    https://www.sciencedirect.com/science/article/pii/S0264127521000903
  • H. Kurita, R. Ishigami, C. Wu and F. Narita, Mechanical Properties of Mechanically-Defibrated Cellulose Nanofiber Reinforced Epoxy Resin Matrix Composites, Journal of Composite Materials 55 (2021) 455-464.
    https://journals.sagepub.com/doi/full/10.1177/0021998320967430
  • F. Narita, Z. Wang, H. Kurita, Z. Li, Y. Shi, Y. Jia and C. Soutis, A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of Covid-19 and Other Viruses, Advanced Materials 33 (2021) 2005448.
    https://doi.org/10.1002/adma.202005448
  • Y. Wang, T. Yanaseko, H. Kurita, H. Sato, H. Asanuma and F. Narita, Electromechanical Response and Residual Thermal Stress of Metal-Core Piezoelectric Fiber /Al Matrix Composites, Sensors 20 (2020) 5799.
    https://www.mdpi.com/1424-8220/20/20/5799
  • Z. Wang, H. Kurita, H. Nagaoka and F. Narita, Potassium Sodium Niobate Lead-Free Piezoelectric Nanocomposite Generators Based on Carbon-Fiber-Reinforced Polymer Electrodes for Energy-Harvesting Structures, Composites Science and Technology, 199 (2020) 108331.
    https://www.sciencedirect.com/science/article/pii/S0266353820312665
  • F. Narita, Y. Wang, H. Kurita and M. Suzuki, Multi-Scale Analysis and Testing of Tensile Behavior in Polymers with Randomly Oriented and Agglomerated Cellulose Nanofibers, Nanomaterials 10 (2020) 700.
    https://www.mdpi.com/2079-4991/10/4/700
  • Y. Xie, H. Kurita, R. Ishigami and F. Narita, Assessing the Flexural Properties of Epoxy Composites with Extremely Low Addition of Cellulose Nanofiber Content, Applied Sciences 10 (2020) 1159.
    https://www.mdpi.com/2076-3417/10/3/1159
  • Z. Wang and F. Narita, Fabrication of Potassium Sodium Niobate Nano-Particle/Polymer Composites with Piezoelectric Stability and Their Application to Unsteady Wind Energy Harvesters, Journal of Applied Physics, 126 (2019) 224501.
    https://aip.scitation.org/doi/full/10.1063/1.5127937
  • K. Katabira, H. Kurita, Y. Yoshida and F. Narita, Fabrication and Characterization of Carbon Fiber Reinforced Plastics Containing Magnetostrictive Fe-Co Fibers with Damage Self-Detection Capability, Sensors, 19 (2019) 4984.
    https://www.mdpi.com/1424-8220/19/22/4984
  • Z. Yang, K. Nakajima, L. Jiang, H. Kurita, G. Murasawa and F. Narita, Design, Fabrication and Evaluation of Metal-Matrix Lightweight Magnetostrictive Fiber Composites, Materials and Design, 175 (2019) 107803.
    https://www.sciencedirect.com/science/article/pii/S0264127519302400
  • Z. Wang and F. Narita, Corona Poling Conditions for Barium Titanate/Epoxy Composites and their Unsteady Wind Energy Harvesting Potential, Advanced Engineering Materials, 21 (2019) 1900169.
    https://doi.org/10.1002/adem.201900169
  • M. Peron, K. Katabira, L. M. Viespoli, F. Narita, F. Berto, Mixed Mode Fracture Behavior of Notched Giant Magnetostrictive: Mechanical Characterization and Comparison among Failure Criteria, Theoretical and Applied Fracture Mechanics, 99 (2019) 194-204.
    https://www.sciencedirect.com/science/article/pii/S0167844218304968
  • F. Narita, H. Nagaoka and Z. Wang, Fabrication and Impact Output Voltage Characteristics of Carbon Fiber Reinforced Polymer Composites with Lead-Free Piezoelectric Nano-Particles, Materials Letters, 236 (2019) 487-490.
    https://doi.org/10.1016/j.matlet.2018.10.174
  • F. Narita and M. Fox, A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications (Invited Review), Advanced Engineering Materials, 20 (2018) 1700743.
    https://doi.org/10.1002/adem.201700743
  • Z. Yang, K. Nakajima, R. Onodera, T. Tayama, D. Chiba and F. Narita, Magnetostrictive Clad Steel Plates for High-Performance Vibration Energy Harvesting, Applied Physics Letters, 112 (2018) 073902.
    https://aip.scitation.org/doi/full/10.1063/1.5016197
  • F. Narita, M. Fox, K. Mori, H. Takeuchi, T. Kobayashi and K. Omote, Potential of Energy Harvesting in Barium Titanate Based Laminates from Room Temperature to Cryogenic/High Temperatures: Measurements and Linking Phase Field and Finite Element Simulations, Smart Materials and Structures, 26 (2017) 115027.
    http://iopscience.iop.org/article/10.1088/1361-665X/aa91a5/meta
  • T. Takeda and F. Narita, Fracture Behavior and Crack Sensing Capability of Bonded Carbon Fiber Composite Joints with Carbon Nanotube-based Polymer Adhesive Layer under Mode I Loading, Composites Science and Technology, 146 (2017) 26-33.
    http://www.sciencedirect.com/science/article/pii/S0266353817308709
  • F. Narita, T. Kobayashi and Y. Shindo, Evaluation of Dielectric and Piezoelectric Behavior of Unpoled and Poled Barium Titanate Polycrystals with Oxygen Vacancies using Phase Field Method, International Journal of Smart and Nano Materials, 7 (2016) 265-275.
    http://www.tandfonline.com/doi/full/10.1080/19475411.2017.1278834